

Genome-wide association studies (GWAS) - Part 1

Heather J. Cordell

Population Health Sciences Institute Faculty of Medical Sciences Newcastle University, UK heather.cordell@ncl.ac.uk

Association testing: case/control studies

- Collect sample of affected individuals (cases) and unaffected individuals (controls)
 - Or a else a sample of random "population" controls
 - Most of whom will not have the disease of interest
- Examine the association (correlation) between alleles present at a genetic locus and presence/absence of disease
 - By comparing the distribution of genotypes in affected individuals with that seen in controls

Genome-wide association studies (GWAS)

- Popular (and highly successful) approach over past 12 years
- Enabled by advances in high-throughput (microarray-based) genotyping technologies
- Idea is to measure the genotype at a set of single nucleotide polymorphisms (SNPs) across the genome, in a large set of unrelated cases and controls
 - Or related individuals (family data) but need to analyse differently

Two individuals

Person 1 ACCTGTGTGCCCAATGGCGTCCCATACTATCGG ACCTGTGCGCCCAATGGCGTCCCATACTATCGG

Person 2 ACCTGTGCGCCCAGTGGCGTCCCATACTATCGG ACCTGTGCGCCCAGTGGCGTCCCATAGTATCGG

• Test each SNP for association/correlation with disease phenotype

Heather Cordell (Newcastle)

GWAS (Part 1)

- / --

Case/control studies

• Each person can have one of 3 possible genotypes at a SNP (with alleles coded 1 and 2)

Genotype	Cases	Controls
2 2	500 $(= a)$	200 (= b)
1 2	$1100 \ (= c)$	820 $(=d)$
1 1	400 $(=e)$	980 $(= f)$
Total	2000	2000

- \bullet Test for association (correlation) between genotype and presence/ absence of disease using standard χ^2 test for independence on 2 df
- Two odds ratios can be estimated
 - OR $(2|2:1|1) = \frac{af}{be}$
 - OR $(1|2:1|1) = \frac{cf}{de}$

Odds ratios

- Odds of disease are defined as P(diseased)/P(not diseased)
 - Odds ratio OR (2|2:1|1) repesents the factor by which your odds of disease must be multiplied, if you have genotype 2|2 as opposed to 1|1
 - i.e. the 'effect' of genotype 2|2
- Similarly, we can define the OR for 1|2 vs 1|1
 - \bullet As the factor by which your odds of disease must be multiplied, if you have genotype 1|2 as opposed to 1|1
 - $\bullet\,$ i.e. the 'effect' of genotype 1|2
- ORs are closely related (often \approx) genotype relative risks
 - The factor by which your probability of disease must be multiplied, if you have genotype 1|2 as opposed to 1|1 (say)
- If your genotype has no effect on your probability (and therefore on your odds) of disease, then the ORs=1.
 - \bullet So the association test can be thought of as a test of the null hypothess that the ORs=1

Heather Cordell (Newcastle)

GWAS (Part 1)

5 / 38

Genotype relative risks

• If a disease is reasonably rare, the odds ratio approximates the genotype relative risk (GRR, RR)

Genotype	Penetrance	GRR	Odds	OR
1/1	0.01	1.0	0.01/0.99 = 0.0101	1.00
1/2	0.02	2.0	0.02/0.98 = 0.0204	2.02
2/2	0.05	5.0	0.05/0.95 = 0.0526	5.21

• If your genotype has no effect on your probability (and therefore your RR) of disease, then both the ORs and the GRRs=1.

Heather Cordell (Newcastle)

GWAS (Part 1)

6/3

Dominant/recessive effects

Dominant:

Genotype	Cases	Controls	Total
2 2 and 1 2	500+1100	200+820	700+1920
1 1	400	980	1380
Total	2000	2000	4000

Recessive:

Genotype	Cases	Controls	Total
2 2	500	200	700
1 2 and 1 1	1100+400	820+980	1920+1380
Total	2000	2000	4000

• Can also rearrange table to examine effects of alleles (1 df tests):

Counting alleles

Counts in			
Allele	Cases	Controls	
2	2100 (=a)	1220 (=b)	Alleli
1	1900 (= c)	$2780 \ (=d)$	
Total	400	400	

Allelic OR = ad/bc

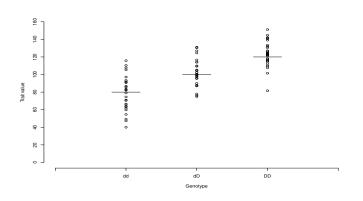
- χ^2 test statistic on 1 df = $\sum_i (O_i E_i)^2 / E_i$ where O_i and E_i are the observed and expected values in cell i.
 - Assumes HWE under null and multiplicative allelic effects under alternative: considers chromosomes as independent units
 - Better approach: use counts in previous genotype table to perform a Cochran-Armitage trend test
 - Even better approach: use linear or logistic regression

ewcastle) GWAS (Part 1) 7 / 38 Heather Cordell (Ne

GWAS (Part 1)

Testing for association: quantitative traits

- Linear regression provides a natural test for quantitative traits
 - Testing the null hypothesis that the slope = 0



Heather Cordell (Newcastle)

WAS (Part 1)

9 / 38

Used in case/control studies

- Outcome is affected or unaffected
- Model probability (and thus odds) of disease p as function of variable x coding for genotype:

Logistic regression

$$\ln \frac{p}{1-p} = \beta_0 + \beta_1 x \quad \equiv c + mx$$

- Use observed genotypes in cases and controls to estimate the values of regression coefficients β_0 and β_1
 - And to test whether $\beta_1 = 0$

Heather Cordell (Newcastle)

GWAS (Part 1)

10 / 3

Logistic regression

- Standard method used in standard epidemiological studies e.g. of risk factors such as smoking in lung cancer
- Main advantage is you can include more than one predictor in the regression equation e.g.

$$\ln \frac{p}{1-p} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

where x_1 , x_2 , x_3 code for

- genotypes at 3 loci
- measured environmental covariates (e.g. age, sex, smoking etc),
- genetic principal component scores (to adjust for population substructure),
- interactions between loci etc. etc.

Testing for association

- All methods produce a test statistic and a p value at each SNP, indicating how significant the association/correlation observed appears to be
 - i.e. how likely it was to have occurred by chance
- At any location showing 'significant' association, we expect to see several SNPs in the same region showing association/correlation with phenotype
 - Due to the correlation or linkage disequilibrium (LD) between neighbouring SNPs

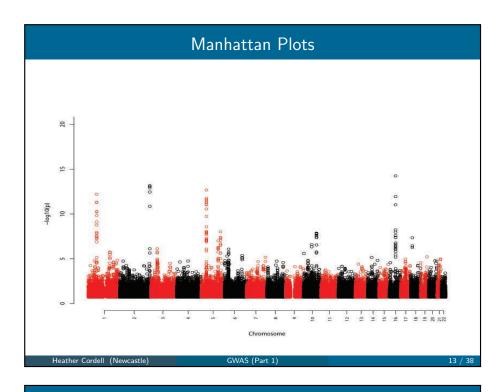
Heather Cordell (Newcastle)

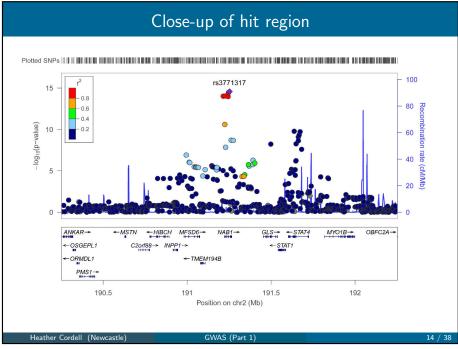
GWAS (Part 1)

12 / 3

Heather Cordell (Newcastle)

GWAS (Part 1)





Historical Perspective: Complement Factor H in AMD

- First (?) GWAS was by Klein et al. (2005) Science 308:385-389
- Typed 116,204 SNPs in 96 cases (with age-related macular degeneration, AMD) and 50 controls
 - Very small sample size they were very lucky to find anything!
 - \bullet Luck was due to the fact the polymorphism has a very large effect (recessive OR=7.4)
- Klein et al. followed up on two SNPs passing threshold $(p < 4.8 \times 10^{-7})$
 - Plus a third SNP that just failed to pass significance threshold, but lay in same region as first SNP

Complement Factor H in AMD

- Of the 3 SNPs followed up:
 - One appeared to be due to genotyping errors: significance disappeared on filling in some missing genotypes
 - First and third SNP lie in intron of Complement Factor H (CFH) gene
 - Lies in region previously implicated by family-based linkage studies
- Resequencing of the region identified a polymorphism of plausible functional effect
- Immunofluorescence experiments in the eyes of AMD patients supported the involvement of *CFH* in disease pathogenesis.

Heather Cordell (Newcastle)

GWAS

- GWAS really got going about 12 or 13 years ago
 - See Visscher et al. (2012) AJHG 90:7-24 "Five Years of GWAS Discovery"
 - And Visscher et al. (2017) AJHG 101:5-22 "10 Years of GWAS Discovery: Biology, Function and Translation"
- 2007/2008 saw a slew of high-profile GWAS publications
 - Breast cancer (Easton et al. 2007)
 - Rheumatoid Arthritis (Plenge et al. 2007)
 - Type 1 and Type 2 diabetes (Todd et al. 2007; Zeggini et al. 2008)
- Arguably the most influential was the Wellcome Trust Case Control Consortium (WTCCC) study of 7 different diseases
 - http://www.wtccc.org.uk/

Heather Cordell (Newcastle)

GWAS (Part 1

17 / 38

WTCCC

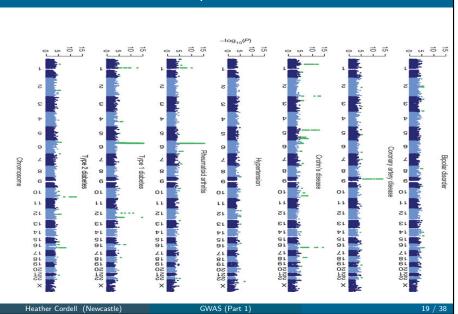
- Nature 447: 661-678 (2007)
- Considered 2000 cases for each of the following diseases:
 - Bipolar disorder, coronary artery disease, Crohn's disease, hypertension, rheumatoid arthritis, type 1 diabetes, type 2 diabetes
- Compared each disease cohort to common control panel
 - 3000 population-based controls
 - From 1958 birth cohort and National Blood Service
- Highly successful
 - WTCCC found 24 separate association signals
 - Including highly convincing signals in 5 out of the 7 diseases studied
 - All were replicated in subsequent independent follow-up studies

Heather Cordell (Newcastle)

GWAS (Part 1)

18 / 3

Manhattan plots for 7 diseases



Lessons from WTCCC (and others)

- Typically used rather standard statistical/epidemiological methods (χ^2 tests, t tests, logistic regression etc.)
- Success largely due to:
 - An appreciation of the importance of large sample size (> 2000 cases, similar or greater number of controls)
 - Stringent quality control procedures for discarding low-quality SNPs and/or samples
 - Stringent significance thresholds ($p=5\times10^{-8}$) to account for multiple testing and/or low prior prob of true effect
 - Importance of replication in an independent data set

Heather Cordell (Newcastle)

WAS (Part 1)

Quality Control

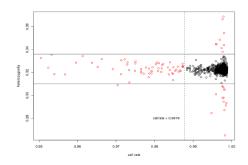
- Stringent QC checks are required for GWAS data
- Discard samples (people) deemed unreliable
 - Low genotype call rates, excess heterozygosity etc.
 - X chromosomal markers useful for checking gender
 - Males should 'appear' homozygous at all X markers
 - Genome-wide SNP data useful for checking relationships and ethnicity
- Discard data from SNPs deemed unreliable
 - On basis of genotype call rates, Mendelian misinheritances, Hardy-Weinberg disequilibrium
 - Exclude SNPs with low minor allele frequency (MAF)

Heather Cordell (Newcastle)

GWAS (Part 1)

21 / 38

QC: call rates and heterozygosity



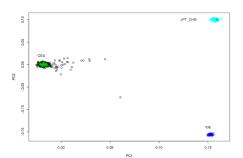
- 61 sample exclusions (low call-rate); 23 exclusions (heterozygosity)
- SNP exclusions also made based on call-rates, MAF and Hardy-Weinburg equilibrium (HWE)

Heather Cordell (Newcastle)

GWAS (Part 1

22 / 3

QC: ethnicity tests



- Multidimensional scaling (with 210 HapMap individuals) identifies 33 samples with non-Caucasian ancestry
- Similar methods can be used to model more subtle population differences between samples

Multivariate Analysis

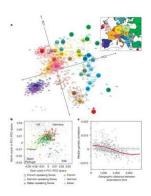
- Several related multivariate analysis techniques have been proposed for detecting population structure in genome-wide association studies
 - Principal components analysis (PCA)
 - Principal coordinates analysis (PCoA)
 - Multidimensional scaling (MDS)
- If population differences can be detected (and adjusted for) in association analysis, this offers a way to deal with the problem of population stratification
 - Population sampled actually consists of several 'sub-populations' that do not really intermix
 - Can lead to spurious false positives (type 1 errors) in case/control studies
- These techniques can also be used in quality control (QC) procedures, to check for (and discard) population outliers

Heather Cordell (Newcastle)

GWAS (Part 1)

Principal components analysis (PCA)

Genes mirror geography within Europe



J Novembre et al. (2008) Nature 456(7218):98-101, doi:10.1038/nature07331

Heather Cordell (Newcastle)

GWAS (Part 1)

25 / 38

Principal Components Analysis

- Price et al. (2006) Nature Genetics 38:904-909; Patterson et al. (2006) PLoS Genetics 2(12):e190
 - Based on popn genetics ideas from Cavalli-Sforza (1978)
- Idea is to form a large matrix M of SNP counts (0,1,2) corresponding to the genotype at a L loci (=rows) for n individuals (=columns)

$$\mathsf{M} = \begin{pmatrix} g_{11} & g_{12} & \cdot & g_{1n} \\ g_{21} & g_{22} & \cdot & g_{2n} \\ g_{31} & g_{32} & \cdot & g_{3n} \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ g_{L1} & g_{L2} & \cdot & g_{Ln} \end{pmatrix}$$

Heather Cordell (Newcastle)

GWAS (Part 1)

26 / 3

Principal Components Analysis

• Subtract row means and normalise by function of row allele frequency $\sqrt{f_l(1-f_l)}$ to give matrix X

$$X = \begin{pmatrix} x_{11} & x_{12} & . & x_{1n} \\ x_{21} & x_{22} & . & x_{2n} \\ x_{31} & x_{32} & . & x_{3n} \\ . & . & . & . \\ . & . & . & . \\ x_{L1} & x_{L2} & . & x_{Ln} \end{pmatrix}$$

- This matrix will be used as starting point for PCA
 - In principal we could start with a different matrix in particular not all PCA approaches would normalise by $\sqrt{f_l(1-f_l)}$

Multivariate Analysis

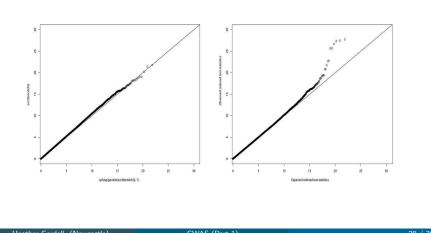
- Estimate covariance matrix $\Psi = X^T X$ between all pairs of individuals, with entries ψ_{ij} defined as the covariance (summing over SNPs) between column i and j of X
 - Represents average genome-wide IBD (estimated from IBS)
 - Compute the eigenvectors \vec{v}_j and eigenvalues λ_j of matrix Ψ
 - \bullet Co-ordinate j of the $k{\rm th}$ eigenvector represents the ancestry of individual j along 'axis' k
- For technical details, see McVean (2009) PLoS Genetics 5;10:e1000686
- Many genetics packages e.g. (PLINK) will allow you to calculate the top 10 (or more) PCs
 - Different geographic populations can often be well separated by just the first two or three PCs
 - Useful for outlier detection
 - For more subtle differences, you may need to calculate more PCs
 - And include them as covariates in the regression equation
 - Post-GWAS QC can determine whether you have included 'enough'

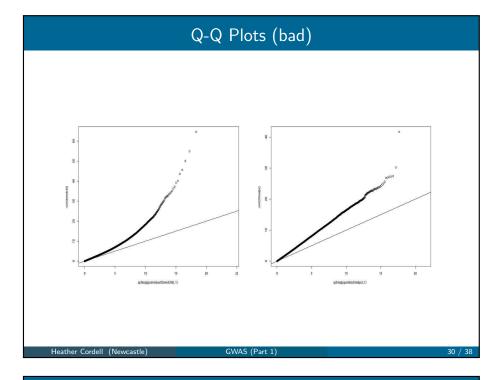
Heather Cordell (No

GWAS (Part 1)

Post GWAS QC: Q-Q Plots (good)

• Plot ordered test statistics (y axis) against their expected values (x axis)





Population stratification

- ullet A QQ plot showing constant inflation (straight line with slope > 1) can indicate population stratification/population substructure
- Simple solution: Genomic Control (Devlin and Roeder 1999)
 - Use your observed test statistics to estimate the slope (=inflation factor λ)
 - \bullet Divide each test statistic by λ to get an adjusted (deflated) test statistic
- More complicated solution: use PCA/MDS or similar
- Even more complicated solution: use linear mixed models

Relatedness

- With genome-wide data, can also infer relationships based on average identity by descent (IBD) $\Psi = X^T X$ or identity by state (IBS)
 - Using 'thinned' subset of markers with high minor allele frequency (MAF) and in approximate linkage equilibrium
 - Simple relationships (PO, FS, MZ/duplicates) can identified with only a few hundred markers
 - More complicated relationships require 10,000-50,000 SNPs
- Various software packages, including PLINK, KING and TRUFFLE

Heather Cordell (Newcastle)

AS (Part 1)

Heather Cordell (Newcastle

GWAS (Part 1)

GWAS (Part 1)

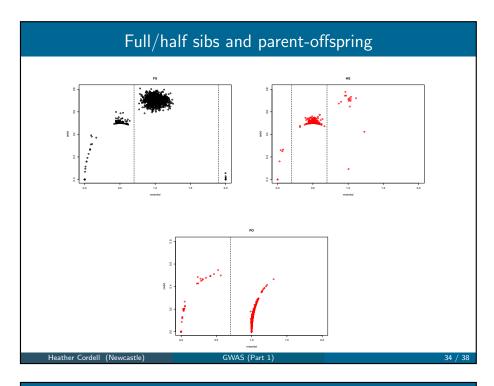
Expected IBD sharing

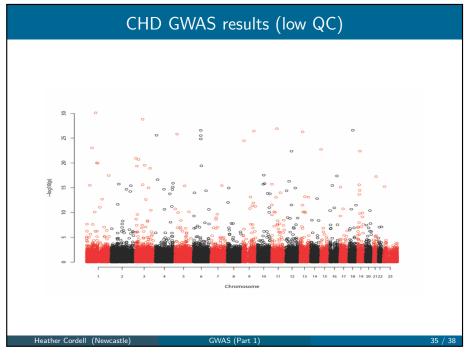
• Assuming no inbreeding, the IBD state probabilities are:

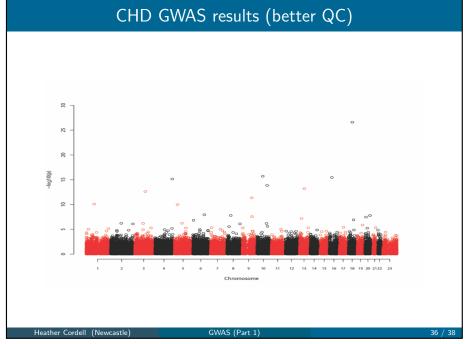
	Number of alleles shared IBD		
Relationship	2	1	0
MZ twins	1	0	0
Parent-Offspring	0	1	0
Full siblings	1/4	1/2	1/4
Half siblings	0	1/2	1/2
Grandchild-grandparent	0	1/2	1/2
Uncle/aunt-nephew/niece	0	1/2	1/2
First cousins	0	1/4	3/4
Second cousins	0	1/16	15/16
Double 1st cousins	1/16	6/16	9/16

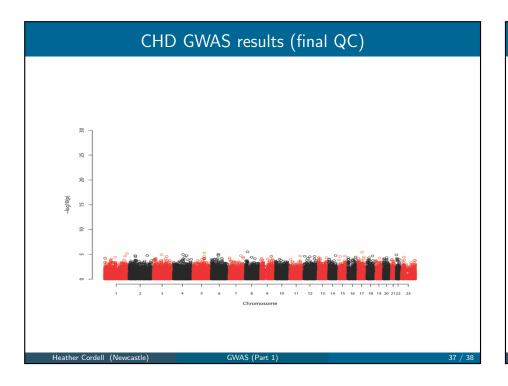
• A useful visualisation tool is to plot SE(IBD) vs mean(IBD)

GWAS (Part 1









Genome-wide meta-analysis

- Puts together data (or results) from a number of different studies
 - Could analyse as one big study
 - But preferable to analyse using meta-analytic techniques
 - At each SNP construct an overall test based on the results (log ORs and standard errors) from the individual studies
- Meta-analysis is often made easier by using imputation
 - Inferring (probabilistically) the genotypes at SNPs which have not actually been genotyped
 - On the basis of their known correlations with nearby SNPs that have been genotyped
 - Using a reference panel of people (e.g. 1000 Genomes) who have been genotyped at all SNPs
- Enables meta-analysis of studies that used different genotyping platforms
 - By imputing to generate data at a common set of SNPs
 - Ideally while accounting for the imputation uncertainty in the downstream statistical analysis
 - In practice often don't bother use post-imputation QC to remove poorly-imputed SNPS

Heather Cordell (Newcastle)

GWAS (Part 1)