

National Heart Lung and Blood Institute Exome Sequencing Project (NHLBI-ESP)

Selection for the 12 Primary Traits

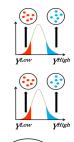
Extreme quantitative trait values

Low-density lipoprotein (N=657) Blood pressure (N=812)

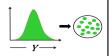
Disease severity

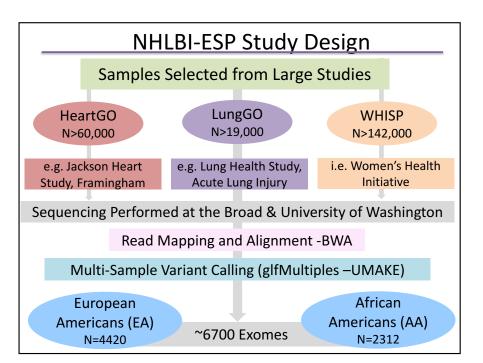
Asthma (N=190)

Chronic obstructive pulmonary disease (N=623)


Disease endpoints

Stroke (N=551)


Early onset myocardial infarction (N=1007)

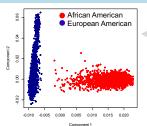

Deeply phenotyped individuals

Randomly selected to be used as controls (N=964)

Extensive Secondary Phenotypic Data

- C-reactive protein (N=3379)
- Red blood cell count (N=1103)
- ➤ EKG measurements(N_{EKG-OT}= 3442)
- Systolic blood pressure (N=4423)
- > Fasting blood glucose (N=2470)
- Triglycerides (N=3728)

Fibrinogen (N=2915)


- ➤ Uric acid (N=2169)
- High-density lipoprotein (N=3770)
 - Waist-to-hip ratio (N=3853)
- ➤ Intima-media thickness (N=2079)
- White blood cell count (N=3792)
- ➤ Low-density lipoprotein (N=2685)
- von Willebrand factor (N=1587)
- 59 Secondary phenotypes*
 - > 48 quantitative traits
 - 11 qualitative traits
- *Some traits are both primary and secondary
 - i.e. asthma, blood pressure, BMI, COPD, LDL, T2D

Data Quality Control & Association Analysis

Very different for rare variant sequence data than for common variants obtained from genotyping arrays

Analysis performed using Variant Association Tools

http://varianttools.sourceforge.net/VAT

Exome Data Quality Control

Variant Site Removal

Support Vector Machine

Variant Call Removal

Read Depth <10X

Variant Site Removal

>500X mean depth, Missing >10% genotypes

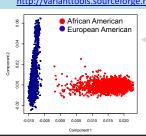
Sex Check

Duplicates & Related Sample Check

Designate EAs & AAs

Multidimensionality scaling (MDS)

Variant Site Removal


Deviation from HWE

Data Quality Control & Association Analysis

Very different for rare variant sequence data than for common variants obtained from genotyping arrays

Analysis performed using Variant Association Tools

http://varianttools.sourceforge.net/VAT

Exome Data Quality Control

Variant Site Removal

Support Vector Machine

Variant Call Removal

Read Depth <10X

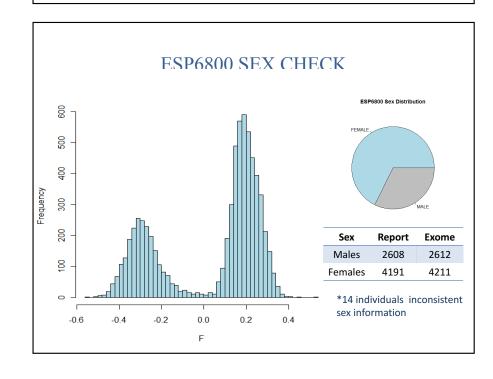
Variant Site Removal

>500X mean depth, Missing >10% genotypes

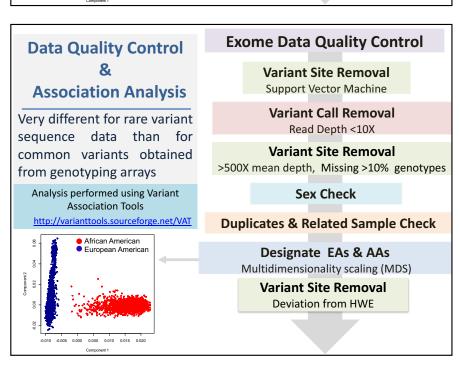
Sex Check

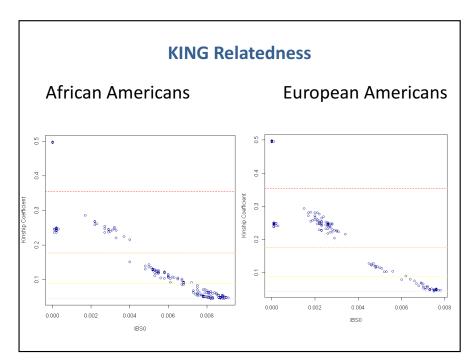
Duplicates & Related Sample Check

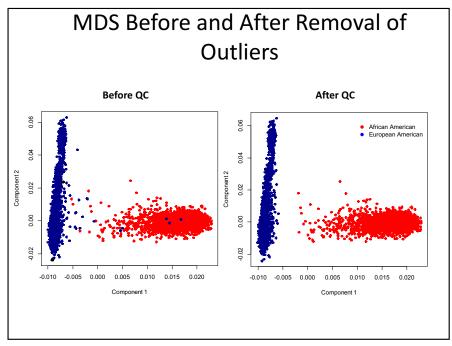
Designate EAs & AAs

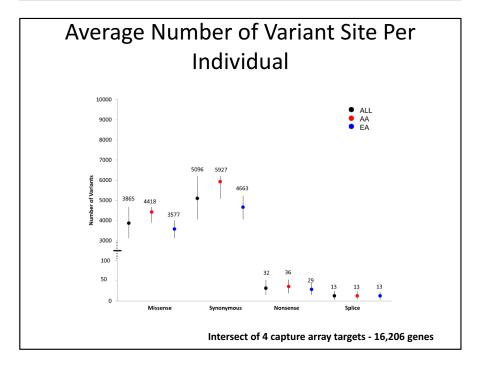

Multidimensionality scaling (MDS)

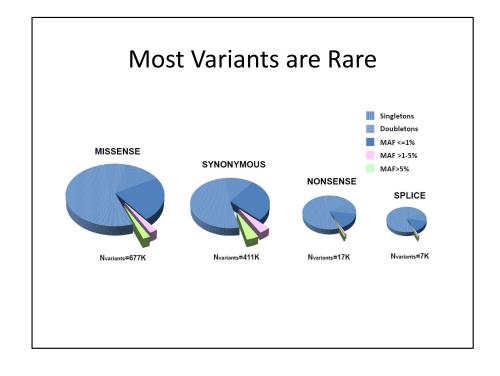
Variant Site Removal


Deviation from HWE


Support Vector Machine (SVM)


- A machine-learning algorithm, to separate likely true positive and false-positive variant sites.
- Uses VCF annotation related to quality of each SNV, including
 - Overall depth
 - Fraction of samples with coverage
 - Fraction of reference bases in heterozygous individuals (allele balance)
 - Inbreeding coefficient
 - In all 16 parameters were used
- Training set
 - False positives
 - SNVs that deviated significantly from expected values in three or more annotation categories
 - True positives
 - SNVs at HapMap polymorphic sites and Omni 2.5 array polymorphic sites in the 1000 Genomes project data
- The SVM classifier was used to identify all likely false positive sites
- Those variant sites which fail the support vector machine (SVM) (Likely false positive variant sites)
 - Are flagged and removed from further analysis


Exome Data Quality Control Data Quality Control Variant Site Removal **Association Analysis** Support Vector Machine **Variant Call Removal** Very different for rare variant Read Depth <10X sequence data than for **Variant Site Removal** common variants obtained >500X mean depth, Missing >10% genotypes from genotyping arrays Analysis performed using Variant **Sex Check Association Tools** http://varianttools.sourceforge.net/VAT **Duplicates & Related Sample Check** African American European American Designate EAs & AAs Multidimensionality scaling (MDS) **Variant Site Removal Deviation from HWE**



Exome Data Quality Control Data Quality Control Variant Site Removal Association Analysis Support Vector Machine Variant Call Removal Very different for rare variant Read Depth <10X sequence data than for **Variant Site Removal** common variants obtained >500X mean depth, Missing >10% genotypes from genotyping arrays Analysis performed using Variant **Sex Check Association Tools** http://varianttools.sourceforge.net/VAT **Duplicates & Related Sample Check** African American European American Designate EAs & AAs Multidimensionality scaling (MDS) Variant Site Removal **Deviation from HWE**

Removal of Additional Variant Sites

- Variant sites which deviate from HWE
 - − Using a p-value <1x10⁻⁷ criterion
 - Number of variant sites which deviate from HWE expectations:
 - EA: 2332
 - AA: 2663

Average Number of Unique Variants per Individual Nonsense 2 Synonymous Missense 59

Analysis of Phenotypes and Exome Data

Extreme QTs

Disease Traits

QTs

Dichotomized

Case-control

Analyze QT values

Control for Population Substructure

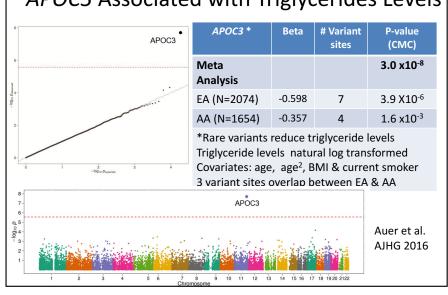
Included population-specific C1 & C2

Selection of Covariates

Phenotype-specific model selection

Association Analysis

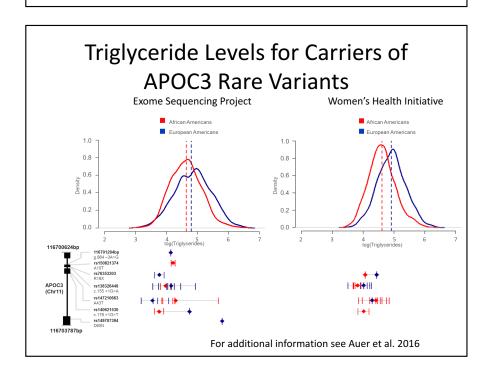
Single Variant Association


- Analysis

 All variant types included
- e.g. synonymous, missense, etc.

Rare Variant Aggregate Association Analysis

- CMC, SKAT (MAF <1%) and VT (MAF<5%)</p>
- Variant types restricted within gene region
- i.e. missense, nonsense, spice site


Burden of Rare Variants APOC3 Associated with Triglycerides Levels

The Exome Chip

NHLBI-ESP the largest contributor of sequence data for the development of the exome chip

- > ~240,000 missense, nonsense and splice site variants
- NHLBI-ESP findings are being followed up using the exome chip
- Novel findings are also being pursed
- More than 100,000 exome chips being genotyped and analyzed using samples from the ESP cohorts

Replication with the Exome Chip *APOC3* Associated with Triglycerides Levels

APOC3 *	Sample Size	# Variant Sites	P-value
Meta Analysis	8,069		1.7 x 10 ⁻¹⁸
Women's Health Initiative (WHI) Exome Chip			
Meta Analysis	4,341		9.4 x 10 ⁻¹²
European Americans	2,301	3	1.3 x 10 ⁻⁶
African Americans	2,041	4	1.6 x 10 ⁻⁶
Exome Sequencing Project			
Meta Analysis	3,728		3.0 x 10 ⁻⁸
European Americans	2,074	7	3.9 x 10 ⁻⁶
African Americans	1,654	4	1.6 x 10 ⁻³

^{*}Reduces triglyceride levels

Triglyceride levels natural log transformed

Covariates: age, age², sex, BMI & current smoker