

Variant Calling

- BAM files are large and take considerable resources
 - Storage is expensive
 - One 30x whole genome is ~80-90 gigabytes
 - A small study of 1,000 samples will consume 80 terabytes of disk space
- The cost of cloud computing to call variants
 - (Souilmi et al. 2015)
 - \$5 per exome
 - \$50 per genome
 - For 1,000 samples
 - \$5,000 exome
 - \$50,000 genome

Working with gVCF

- Instead of obtaining VCF files
- Can obtain gVCF files to perform joint calling and the rest of the GATK pipeline
 - A whole genome gVCF
 - ~1 Gigabyte
 - 1/100th the size of a BAM file for one individual
- Need additional information on how variants were called
 - e.g. HaplotypeCaller or UnifiedGenotyper
 - · Not valid to use Unified Genotyper

Influences on Sequence Quality

- DNA quality
 - Age of sample
 - Extract method
 - Source of sample
- Sequencing machines (read length)
- Median sequencing depth
- Alignment
- · Variant calling method used
 - SNVs and Indels

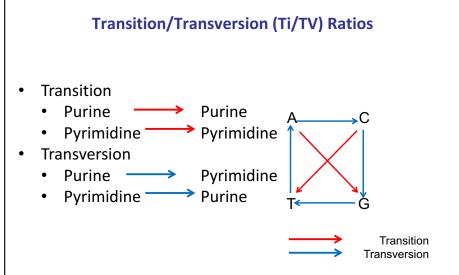
NGS Data Quality Control

- Extremely important to perform before data analysis
 - Poor data quality can increase type I and II errors
 - Due to inclusion of false positive variant sites or incorrect genotype calls
- Sequence quality can be influenced by
 - DNA quality
 - Sequencing machines (read length)
 - Sequencing depth
 - Alignment
 - Variant Calling
 - SNVs and Indels
- Protocols for data QC are still in their infancy
 - No set protocols for QC
- QC which has to be performed is data specific
 - Dependent on read depth
 - Batch effects
 - Availability of duplicate samples
 - etc

NGS Data Quality - Removal of Genotype Calls and Samples

- Sequence read genotype depth (GD)
 - Concerned if GD is too low or too high*
 - GD too low insufficient reads to call a variant site
 - GD too high can be an indication of copy number variants which can introduce false positive variant calls
 - *Due to down sampling in GATK maximum GD is 250
 - Remove genotypes with low read depth, e.g. GD<8
 - Genotype quality (GQ) score
 - Removal of sites with low genotype quality core, e.g. GQ< 20
- Remove individuals who are missing genotype calls/variant sites, e.g.
 10%
 - To remove individuals with bad quality data who can potentially have incorrect genotype calls
- If using different capture arrays use the intersect of the arrays

NGS Data Quality - Removal of Genotype Calls and Samples


- · Removal of sites with missing data
 - e.g. missing > 10% of genotypes
- Removal of "novel" variant sites which only occur in one batch and the alternative allele is observed multiple times or the minor allele frequency (MAF) is high in overall sample
- Removal of sites that deviate from Hardy-Weinberg Equilibrium (HWE)
 - Must be performed by population if the study consists of more than one ancestry group, e.g. African American and European American
 - Related individuals should also be removed from the sample before testing for deviations from HWE

NGS Data Quality Control

- Variant Quality Score Recalibration (VQSR) or
 - GATK
- · Used to determine variant sites of bad quality
- However even after this step
 - Concordance of duplicates (when available) and
 - and Ti/Tv ratios are often low
- Additional QC steps needs to be performed

NGS Data Quality Control

- Values which are used for GD, GQ, and missing data cut offs are based upon
 - Concordance rates
 - if there duplicate samples are available
 - Ti/Tv ratios
 - For individuals
 - Entire sample
 - Removal of batch effects
 - As evaluated by multidimensional scaling (MDS) or
 - Principal components analysis (PCA)
 - Amount of data removed
 - QCI can remove substantial amounts of data which should be avoided
 - e.g. >15% of variant sites

Transition/Transversion (Ti/TV) Ratios

- Ti/Ty Ratios
 - Whole genome ~2.0
 - Exome novel ~2.7
 - Exome known ~3.5

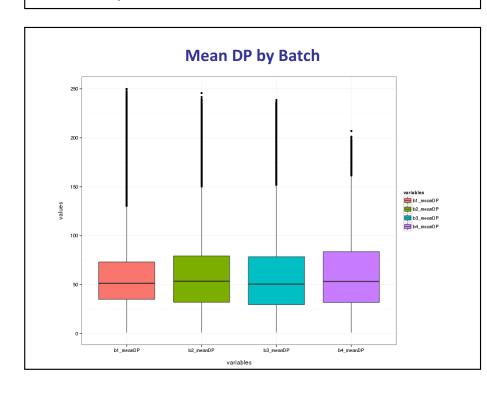
- Ti/Tv ratios can be calculated by \(\frac{1}{4} \)
 - · Sample or
 - Dataset

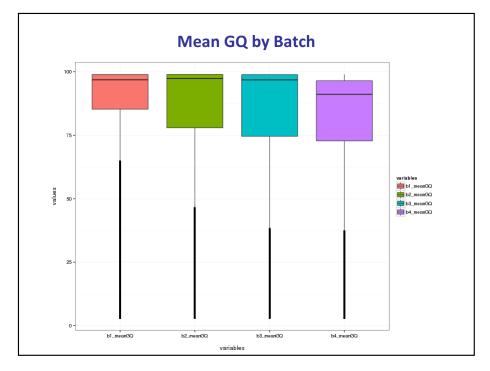
- Ti/Tv ratios can be evaluated for subsets of data
 - e.g. by batch

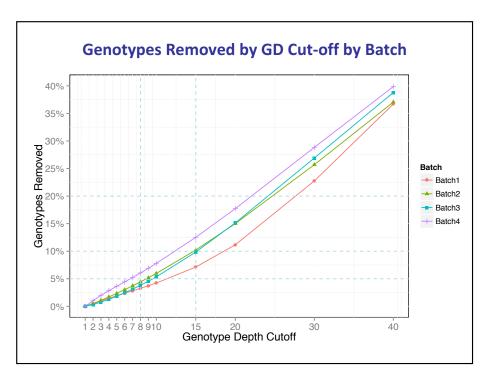
Example -Project Description

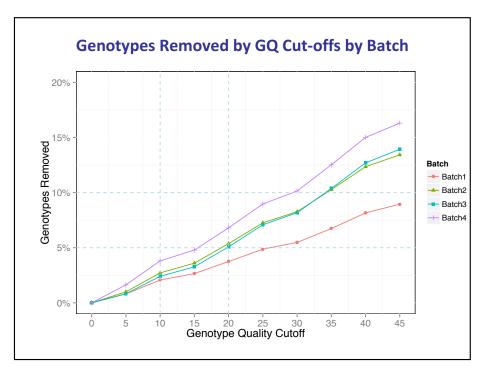
- 1,667 Samples
- Seven cohorts
- Two sequencing centers
 - Center 1
 - Two capture arrays
 - NimbleGen V2Refseg 2010 (CA1): 1082
 - » Batch 1 and 3
 - NimbleGen bigexome 2011 (CA2): 234
 - » Batch 2
 - Center 2
 - One capture array
 - Agilent SureSelect
 - » Batch 4
- Four batches
- No intentional duplicate samples

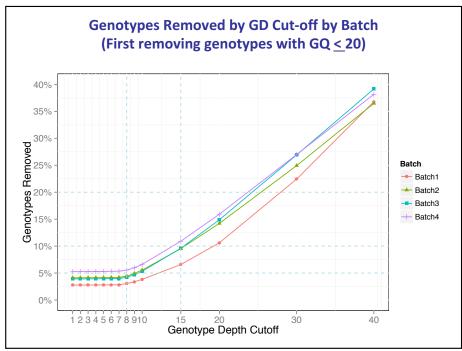
Example Project Description

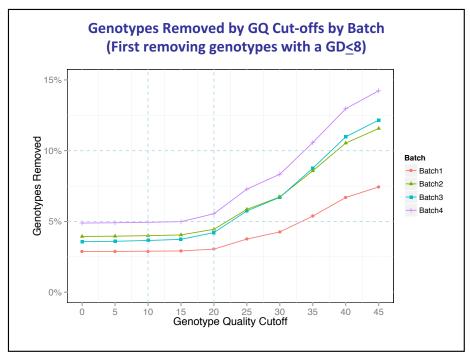

- Intersection of the three capture arrays used
 - NimbleGen V2Refseq 2010
 - Batch 1 and 3
 - NimbleGen bigexome 2011
 - Batch 2
 - Agilent Sure Select
 - Batch 4
- Sequencing machine
 - Illumina HiSeq
- Sequence alignment
 - BWA
- Multi-sample variant calling
 - GATK


Sequence Data QC Overview

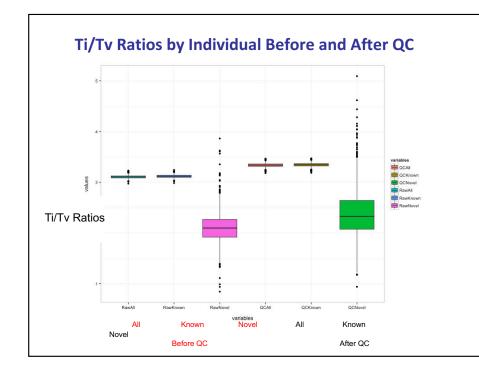

- Variant and genotype call level
 - Evaluation of batch effects
- Genotype call level Removal of genotype calls
 - Low or high depth of coverage GD < 8
 - Low genotype quality score GQ < 20
- Removal of individual samples
 - >20% missing data
 - After taking the intersect of capture arrays
 - Samples without phenotype information
- Variant level removal of variant sites
 - Low call rate
 - i.e., missing call rate > 10%
 - "Novel" variant sites observed ≥2 only in a single batch
 - Deviation from Hardy-Weinberg-Equilibrium
 - · Population specific
 - Unrelated individuals
 - $p<5 x 10^{-8}$


Sequence Data QC Overview


- Detection of sample outliers
 - Perform multidimensional scaling (MDS) to detect outliers
 - Due to population substructure/admixture and batch effects
 - · Remove effects by
 - Additional QC
 - Removal of outliers and\or
 - Inclusion of MDS or PCA components in the association analysis
- Evaluate sex of individuals based upon X and Y chromosomal data
 - Sample mix-ups
 - Individuals with Turner or Klinefelter Syndrome
- Evaluate samples for cryptically related individuals and duplicates
 - King or Plink algorithm
 - Retain one duplicate of a pair
 - Retain only one individual of a relative group or control for relatedness in the analysis, i.e. mixed models
- Post Analysis Quantile-Quantile (QQ)plots
 - To evaluate uncontrolled batch effects and population substructure/admixture



Missing Rate Criteria & Sites Removed

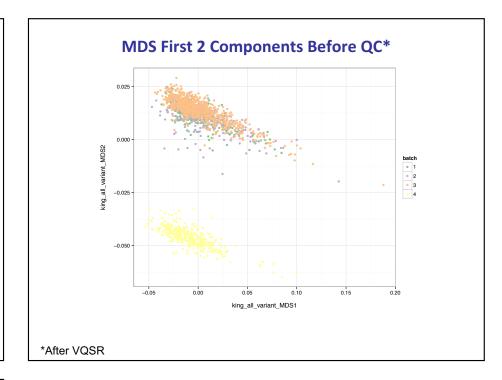

	10%	5%
Before QC*	2.5%	3.9%
After QC	12.9%	18.3%

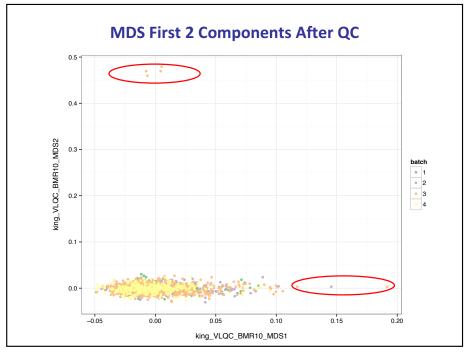
^{*}After VQSR

Variant sites missing >10% of their data were removed

Ti/Tv Ratios during QC Process

	Known	Novel	All
Before VQSR	2.95 ± 0.05	1.18 ± 0.29	2.86 ± 0.07
Before QC	3.12 ± 0.03	2.01 ± 0.32	3.11 ± 0.03
Genotype QC GD<8, GQ <20	3.18 ± 0.04	2.10 ±0.32	3.16 ± 0.03
Remove sites missing >10% genotypes	3.39 ± 0.04	2.42 ± 0.52	3.39 ± 0.04
Remove batch specific novel sites ≥ 2 N=17,835	3.39 ± 0.04	2.41 ± 0.53	3.39 ± 0.04
Remove sites deviating from HWE p<5x10 ⁻⁸ N=4,414	3.41 ± 0.04	2.39 ± 0.54	3.40 ± 0.04




Detecting Outliers Using Multidimensional Scaling (MDS)

- Multidimensional Scaling (MDS) and principal components analysis (PCA) are frequently used to detect outliers
 - MDS & PCA can also be used to control for substructure in the analysis
- Outliers can be cause by
 - Population stratification
 - Population substructure
 - Batch Effects

Sequence Data QC

- Batch effects can sometimes be removed with additional QC
- Extreme outliers should be removed
- Additionally MDS or PCA components can be included in the analysis to control for population substructure\admixture and batch effects
 - Unless correlated with the outcome (phenotype)
- Batch effects (dummy coding) may be included as a covariate in the analysis
 - Unless correlated with the outcome (phenotype)

