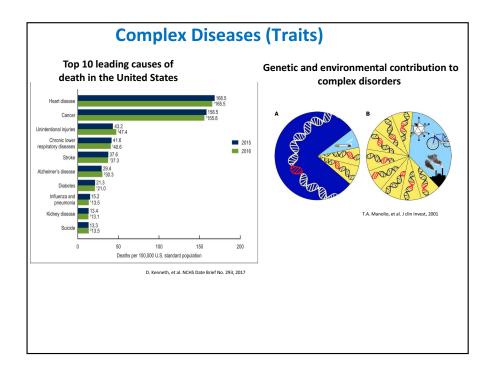
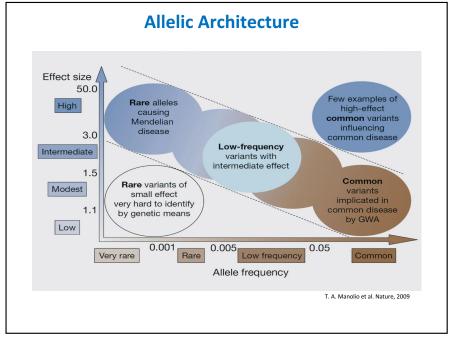
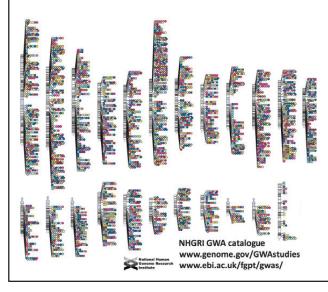

Complex Trait Association Analysis of Rare Variants Obtained from Sequence Data: Population-Based Data


© 2020 Suzanne M. Leal, suzannemleall@gmail.com


Heritability for Common Traits

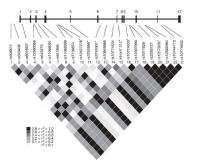
Human height heritability is ~80%

- Strongly associated common variation explain 21—29%
- All common variation explains 60% of height heritability



Complex Disease – Common Variant Associations

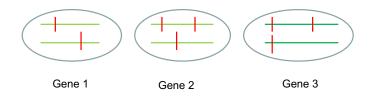
- Disease susceptibility is conferred by variants which are common within populations
 - Variants are old and widespread
- These variants have modest phenotypic effect
- This model is supported by a large number of replicated examples
 - Age Related Macular Degeneration (Klein et al. 2005)
 - · Complement factor H (CFH) gene


Complex Trait – Common Variant Associations

- Although highly successful in identifying thousands of complex trait loci
- Usually pathogenic susceptibility variant(s) not identified

Studying Complex Traits – Common Variant Associations

- Hundreds of thousands of Single nucleotide polymorphism (SNPs) genotyped and analyzed
 - Indirect mapping
 - Markers usually had a minor allele frequency (MAF) > 0.05
 - Usually not pathogenic tag SNPs
 - In linkage disequilibrium with disease susceptibility variant



Complex Disease – Rare Variant Associations

- Complex traits are the result of multiple rare variants
 - Although first thought to large effects, there effect sizes are usually small
- Although these variants are rare, e.g. MAF<0.005
 - Collectively they may be guite common
- Direct tests of this hypothesis where first reported >10 years ago
 - Dallas Heart Study
 - Small sample ~1,200 indiviuals
 - Multi-ethnic
 - Used "extreme" sampling
 - Plasma low density lipoprotein levels (Cohen et al. 2004)
 - NPC1L1

Rationale for Rare Variant Aggregate Association Tests

- Testing individual variants with low effect sizes and minor allele frequencies (MAFs)
 - Underpowered to detect associations
- Testing variants in aggregate increases MAFs
 - Improving the power to detect associations

A Few Rare Variant Association Tests

- Combined Multivariate Collapsing (CMC)
 - Li and Leal AJHG 2008
- Burden of Rare Variants (BRV)
 - Auer, Wang, Leal Genet Epidemiol 2013
- Weighted Sum Statistic (WSS)
 - Madsen and Browning PloS Genet 2009
- Kernel based adaptive cluster (KBAC)
 - Liu and Leal PloS Genet 2010
- Variable Threshold (VT)
 - Price et al. AJHG 2010
- Sequence Kernel Association Test (SKAT)
 - Wu et al. AJHG 2011
- SKAT-0
 - Lee et al. AJHG 2012

Fixed Effect Tests

Random Effect Test Optimal test

Caveats - Aggregate Rare Variant Association Tests

- Misclassification of variants can reduce power
 - Inclusion of non-causal variants
 - Exclusion of causal variants
- · Analysis is limited to
 - Genes
 - Genes within pathways
- Analysis outside of exonic regions is problematic
 - Unlikely a sliding window approach will work
 - · Size of window unknown and will differ across the genome
 - A better understanding of functionality outside the coding regions is necessary
 - Predicted functional regions, enhancer regions, transcription factors, DNase I hypersensitivity sites, etc.

Types of Aggregate Analyses

- Frequency cut offs used to determine which variants to include in the analysis
 - Rare Variants (e.g. <1% frequency)
 - Rare and low (1-5%) frequency variants
- Maximization approaches
- Tests developed to detection associations when variants effects are bidirectional
 - e.g. protective and detrimental
- Incorporate weights based upon annotation
 - Frequency
 - e.g. gnomAD
 - Functionality
 - CADD c-scores

Methods to Detect Rare Variant Associations Using Variant Frequency Cut-offs

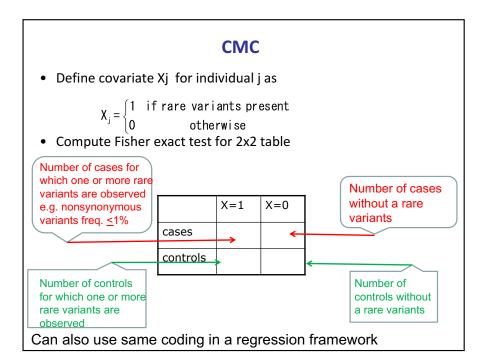
- Combined multivariate & collapsing (CMC)
 - Li & Leal, AJHG 2008
- Collapsing scheme which can be used in the regression framework
 - Can use various criteria to determine which variants to collapse into subgroups
 - Variant frequency
 - · Predicted functionality

CMC

- Example of coding used in regression framework:
 - Binary coding $X_j = \begin{cases} 1 & \text{if rare variants present} \\ 0 & \text{otherwise} \end{cases}$
 - Gene region with 5 variant sites

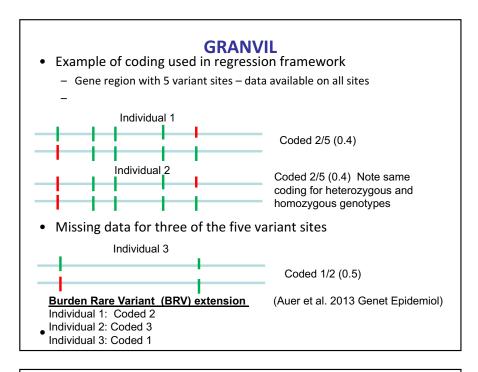
_		_	
			_
	•		
	-		
_			

1	1
2	1
3	0


Coding

Individual

Rare Variant Sites


Green bars: Major allele is observed in the study subject

Red bars: Minor allele has been observed

Methods to Detect Rare Variant Associations Using Variant Frequency Cut-offs

- Gene-or Region-based Analysis of Variants of Intermediate and Low frequency (GRANVIL)
 - Aggregate number of rare variants used as regressors in a linear regression model
 - Can be extended to case-control studies
 - Morris & Zeggini 2010 Genet. Epidemiol
 - Test also referred to as MZ

Methods to Detect Rare Variant Associations Maximization Approaches

- Variable Threshold (VT) method
 - Uses variable allele frequency thresholds and maximizes the test statistic
 - Also can incorporate weighting based on functional information
 - Price et al. AJHG 2010
- RareCover
 - Maximizes the test statistic over all variants with a region using a greedy heuristic algorithm
 - Bhatia et al. 2010 PLoS Computational Biology

Methods to Detect Rare Variant Associations Weighted Approaches

- Group-wise association test for rare variants using the Weighted Sum Statistic (WSS)
 - Variants are weighted inversely by their frequency in controls (rare variants are up-weighted)
 - Madsen & Browning, PLoS Genet 2009
- Kernel based adaptive cluster (KBAC)
 - Adaptive weighting based on multilocus genotype
 - Liu & Leal, PLoS Genet 2010

Methods to Detect Associations with Protective & Detrimental Variants within a Region

- C-alpha
 - Detects variants counts in cases and controls that deviate from the expected binomial distribution
 - For qualitative traits only
 - Neale et al. 2011 PLoS Genet
- Sequence Kernel Association Test (SKAT)
 - Variance components score test performed in a regression framework
 - Can also incorporate weighting
 - Wu et al. 2011 AJHG

Optimal Test

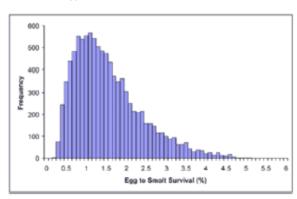
- SKAT-O
 - Maximizes power by adaptively using the data to combine an aggregate test and the sequence kernel association tests
 - Lee et al. 2012 AJHG

Determine MAF Cut-offs for Aggregate Rare Variant Association Tests

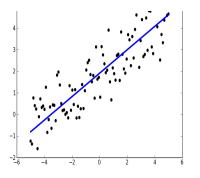
- MAF cut-offs are frequently used to determine which variants to analyze in aggregate rare variant association tests
- MAF from controls should not be used
 - Increases in type I error rates
- Determine variant frequency cut-offs from databases
 - ExAC
 - http://exac.broadinstitute.org/
 - gnomAD
 - http://gnomad.broadinstitute.org/

Significance Level for Rare Variant Association Tests

- For exome data where individual genes are analyzed usually a Bonferroni correction for the number of genes tested is used.
 - There is very little to no linkage disequilibrium between genes
- Often a Bonferroni correction for testing 20,000 genes is often used as the significance level cut-off
 - -2.5×10^{-6}


Problem of Missing Genotypes for Aggregate Rare Variant Association Tests

- Same frequency of missing variant calls in cases and controls
 - Decrease in power
- More variant calls missing for either cases or controls
 - Increase in Type I error
 - Decrease in power
- Remove variant sites which are missing genotypes, e.g. >10%
- Impute missing genotypes using observed allele frequencies
 - For the entire sample
 - Not based on case or control status
- Analyze imputed data using dosages


Analyzing Quantitative Variants

- Most rare variant aggregate analysis methods can be performed on quantitative traits
- If phenotype data includes outliers or deviates from normality
 - Can increase type I errors

Rare Variant Aggregate Methods

- Ideally should be performed in a regression framework
 - Logistic
 - Linear regression

 Almost all methods have been extended to be implemented within a regression framework

Analyzing Quantitative Variants

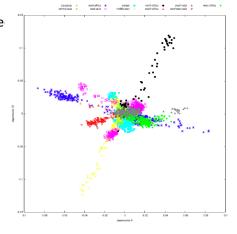
- For data that deviates from normality
 - Quantile-quantile normalization
- For data that includes outliers
 - Winsorize
- Don't winsorize and then normalize
- Instead of analyzing quantitative trait values
- Residual can be generated
 - If their our confounders which need to be controlled
 - Residuals are generated were confounders have been adjusted

Rare Variant Aggregate Methods

- Can control for covariates in the analysis which are potential confounders
 - Age
 - Sex
 - Body Mass Index (BMI)
 - Smoking pack years

Rare Variant Aggregate Methods

- If proportion of cases and controls sampled from each populations is different
 - Can occur due to
 - Disease frequency is different between populations
 - Sloppy sampling
- Population substructure\admixture can cause detection of differences in variant frequencies within a gene which is due to sampling and not disease status
 - False positive findings can be increased



Example Pima Indians

Rare Variant Aggregate Methods

- Currently PCA or MDS are use to control for population substructure\admixture
 - Controls on the global level
 - May not be sufficient in particular for admixed populations

Linear Mixed Models and Generalized linear Mixed Models

- Linear mixed models and their extension Generalized linear mixed models for binary traits
 - Can offer better control of type I error than linear and logistic regression
 - When observations are not independent
 - Related or cryptically related individuals are included in the sample
 - Population structure
- Models both fixed and random effects

Rare Variant Aggregate Methods

- Best to obtain components to include in the regression model
 - using variants which are not in LD e.g. r²<0.5 (prunned)
 - covering a wide range of the allelic frequency spectrum e.g. >0.1%
- Success of PCA\MDS in controlling for population substructure\admixture can be evaluated through lambda and examining Quantile-Quantile (QQ) plots